

TemPoRe:
Tempo Tracking in Real-time with Polynomial Regression

First Author Second Author Third Author
Affiliation1

author1@myorg.org
Affiliation2

author2@myorg.org
Affiliation3

author3@myorg.org

ABSTRACT
TemPoRe is an algorithm implemented in Python that
combines traditional methods with a machine learning
technique to track tempo in real-time. To this end, the
autocorrelation function is calculated on the incoming
signal to detect tempo and polynomial regression is uti-
lized to predict the next tempo based on the prior tempo
to obtain a more stable tempo. This paper will demon-
strate how supervised learning can improve the accuracy
of real-time tempo tracking and additionally suggest
ways to further enhance the performance of this algo-
rithm.

1. INTRODUCTION
Tempo is one of the most important elements of music. It
is therefore not surprising that a lot of research has been
done on tempo tracking to date. DAW programs, such as
Logic and Ableton Live easily find tempo in loaded files,
however, a means of accurately detecting tempo in real-
time scenarios isn’t often found in such programs as a
built-in function. To track tempo in real-time, it is neces-
sary to determine whether the current note onset is a tem-
po determining beat; this is usually decided through the
strength of the onset. But it is difficult to know how
strong it is relative to the other onsets without looking at
the entire piece, which might not be available in advance
in a real-time scenario.

TemPoRe aims to address these problems of estimating
tempo in real-time, making it more robust by combining
an algorithm for detecting tempo with a machine learning
technique for predicting tempo. The reason for using the
prediction method is that humans tend to anticipate the
next beat based on the prior beat when perceiving a beat
[1]. Therefore, it is reasonable to apply this method to the
tempo tracking algorithm. This paper will first describe
previous studies related to tempo tracking and subse-
quently the two methods used in TemPoRe. Finally, I will
discuss how to decide a global tempo from the two tempi
obtained by the two methods.

2. BACKGROUND
To detect tempo, it is essential to track the beat first. This
is because tempo can only be determined once we know
which note onset is the beat. Tempo tracking and beat
tracking are classic research topics in Music Information

Retrieval (MIR) tasks, which require a comprehensive
understanding of various fields such as music, computer-
based technology, and psychology. In recent decades
there has been a substantial amount of wide-ranging re-
search conducted on these topics.

E. D. Scheirer's research [2] can be considered as one of
the pioneering studies in beat tracking [3]. In his work, he
divides the signal into its frequency bands using a comb
filter and tracks tempo by observing where the energy
spike increases the most when looking at the amplitude.
Although he indicated in his research that he could not
specify the right features of the tempo tracker, he focused
on the similarity between rhythm tracking and pitch
tracking and adopted an efficient approach of using filter
banks and autocorrelation for rhythm tracking.

Another approach to tempo tracking can be found in B.
Pardo’s research [4]. His study uses a single oscillator to
track note onsets that occur within a given window of
time and applies weights averaged previous tempo peri-
ods to the current estimated tempo periods to arrive at the
global tempo. However, achieving high accuracy using
this method was difficult because the algorithm only con-
siders the weight of the tempo period, and there is no way
to distinguish which of the note onsets is the beat since
note onsets are not separately classified.

Subsequently, D.P.W. Ellis’s model [5] transforms a
preloaded sound file into an onset-strength envelope and
calculates the autocorrelation function of the signal to
track beats of the rhythm. He additionally utilizes dynam-
ic programming to obtain the globally-optimal beat se-
quence. His model has been verified to accurately detect
tempo, and the method is utilized as the algorithm for the
librosa.beat.track class of the Librosa library [6]
in Python, which is currently one of the most commonly
used beat tracking methods.

In the current research on beat tracking, Steinmetz and
Reiss's model [7] can be considered a state-of-the-art
study. They predict beats and downbeats directly from
waveforms without pre-processing, via methods such as
spectral engineering, by an end-to-end approach. Tem-
poral Convolutional Networks (TCN) are utilized for this
model to achieve a large receptive field. This research
could be a good example of combining MIR and deep
learning, which is currently an active area of research.

3. TWO METHODS
OF DETECTING TEMPO

Real-time tempo tracking, an extension of beat-tracking,
poses various difficulties. First, one must identify which
onset serves as the beat, the periodic time interval be-
tween onsets, even if multiple notes appear simultaneous-
ly. To this end, it is usually done by finding strong peaks
among onsets and choosing an appropriate beat based on
the music’s overall average tempo period. While this pro-
cess may not be difficult for an already loaded file, since
we can pick strong peaks for each section by looking
throughout the music ahead of time, it is challenging to
determine the strength of the current peaks relative to the
upcoming parts in real-time. Therefore, finding the beat is
not an easy task when processing an input signal in real-
time.

TemPoRe employs two distinct methods, both of which
are implemented in Python, which are combined to track
tempo more stably and accurately in real-time. The first
method, inspired by Ellis’s work, above, utilizes the au-
tocorrelation function to estimate tempo and the second
method uses polynomial regression to predict the next
tempo based on the prior tracked tempo. The autocorrela-
tion function is obtained using the librosa.fea-
ture.tempo class of the Librosa library [8], and poly-
nomial regression is performed using the sklearn.
linear_model class of the Sklearn library [9]. While
the fundamental idea of this paper is to track tempo in
real-time, an audio file was used to evaluate the algorithm
instead of a real-time microphone input, in order to avoid
the potential variability caused by microphone type, per-
formance, or other environmental factors. Nonetheless,
TemPoRe itself operates in real-time as if the sound file
were a live sound source.

3.1 The Autocorrelation Function

Among the basic techniques for beat tracking and tempo
estimation described above, such as those utilizing oscil-
lators and comb filters, the autocorrelation function is the
base algorithm selected for use in TemPoRe. This tech-
nique identifies strong peaks by getting the signal’s own
similarity. This involves transforming the signal into the
onset-strength envelope, and then sequentially multiply-
ing itself at delayed time points, thus emphasizing the
strong peaks and identifying them as the basis for the
tempo estimation.

The feature.tempo class is used to estimate tempo
from an incoming signal. The algorithm of this class can
be broken down into three main steps. First, the bpm is
calculated for each bin using the onset-strength function
within the Librosa library, which is followed by
weighting using the autocorrelation function. Finally, any
tempo exceeding the maximum tempo is discarded, and
the weight is adjusted by multiplying with a prior value
before calculating the maximum tempo [8].

To track tempo in real-time, TemPoRe needs to evaluate
the local tempo of smaller segments of sound, not the

global tempo of an entire sound file. Although the
beat.track class is also available for tempo tracking
in the Librosa library, it was not used in this paper be-
cause the feature.tempo class performed better in
tracking the tempo over short segments of the sound
when both classes were tested and compared. The beat
.track class also translates signals into the onset-
strength envelope and calculates the autocorrelation func-
tion to track the tempo, but differs from the beat.
tempo class in selecting the beat based on peak tracking.
Additionally, the feature.tempo class calculates the
weight by multiplying the prior value, whereas the
beat.track class assumes that tempo is relatively
constant throughout the music and picks the strong peak
closest to the estimated tempo as the reference for the
strong beat, which is then used to calculate tempo [6].

In an attempt to utilize the feature.tempo class
for real-time tempo tracking, I set the window size to four
seconds and receive the input signal four times every
second, as shown in Figure 1. From the four tempo values
obtained from each of the four windows, the maximum
and minimum values are discarded and the average of the
remaining two values is calculated. The result of this pro-
cess is then determined as the ‘estimated tempo’. This
proposed approach aims to mitigate the problem of sud-
den and large tempo variations, which can lead to inaccu-
rate tempo tracking. By utilizing this process, it was pos-
sible to make the tempo change smoothly and steadily.

Figure 1. Four windows receiving the input signal

3.2 Polynomial Regression

Using only the estimated tempo obtained by the autucor-
relation function can lead to various problems when de-
tecting tempo. If only the estimated tempo is used, there
is the possibility of incorrectly detecting the beat in cer-
tain situations, such as trills or long pauses (i.e, rests) in
the music. Therefore, I addressed these possible errors by
using a combination of the estimated tempo and the ‘pre-
dicted tempo’ obtained by anticipating the tempo based
on the prior estimated tempi.

In this study, polynomial regression is utilized to pre-
dict the tempo. Polynomial regression is a type of linear
regression that learns the correlation between independ-
ent and dependent variables and predicts the next value
based on it. The difference between polynomial regres-
sion and linear regression is that while linear regression
can only obtain predicted values in the form of a straight
line, polynomial regression can obtain predicted values in
the form of a curve with multiple degrees using a poly-
nomial. Predicting tempo using a linear approach is diffi-

cult since tempo does not generally increase or decrease
uniformly. Therefore, polynomial regression is used to
increase accuracy.

Tempo is detected every two seconds using the fea-
ture.tempo class and this data is used as input for
polynomial regression to predict the next tempo. That is,
the data for polynomial regression is updated every two
seconds, and the machine also learns and performs every
two seconds. The sklearn.linear_model class is
used for this process. After testing various values, a de-
gree of 4 was found to be the most suitable for TemPoRe.

4. CHOOSING THE GLOBAL TEMPO
It is important not only to find the tempo through two
methods – the autocorrelation function and polynomial
regression – but also very important how to determine
which of these tempi serves as the global tempo. This is
because the accuracy of tempo tracking can vary depend-
ing on which tempo is selected. To this end, the determi-
nation of the global tempo in TemPoRe involves a two-
step process that is executed alternately every second
shown in Figure 2.

Figure 2. Flowchart of the TemPoRe algorithm.

In the first step, in the upper part of the figure, the esti-
mated tempo obtained through the autocorrelation func-
tion is always selected, while simultaneously calculating
the difference between the estimated tempo and the pre-
dicted tempo obtained through polynomial regression. In
the second step, in the lower part of the figure, the deci-
sion to use either the estimated tempo or the predicted
tempo is made based on the difference between their val-
ues. If the difference is less than 5, the last estimated
tempo is used as in the first step, and conversely, if it is
greater than 5, the predicted tempo is used instead. This
approach aims to enhance the robustness of the global
tempo by alternately choosing between the two tempi
depending on the difference, and thereby avoiding radical
changes in the tempo.

5. RESULTS
To verify the accuracy of TemPoRe’s performance, a
comparison was made between the data obtained from
professionally trained musicians tapping along with a
beat, and the data obtained from TemPoRe. Bartok’s
<Pentatonic Melody> No. 61 from Mikrokosmos Vol. 2

[10] was used as the test music. Although this piano piece
has a relatively simple structure, it contains diverse
rhythm patterns, including syncopation, making it suita-
ble for testing the accuracy of TemPoRe in various situa-
tions.

5.1 Tapping Data

Cognitive data from actual people seemed to be the most
suitable data to serve as test data for comparison with
TemPoRe. The group of ten people listened <Pentatonic
Melody> No. 61 and were asked to tap where they felt
the beat, and the average value of this data was calculat-
ed. The result of comparing this tapping data and the
tempo obtained through TemPoRe is shown in Figure 3.
The solid line represents the tempo of the tapping data
obtained through the group of musicians, and the dots
indicate the global tempo obtained through TemPoRe.

The most significant difference was found around 45
seconds into the piece, where TemPoRe detected the tem-
po as 88 bpm, whereas the tapping data indicated 96 bpm
at this point in the music. This section corresponds to bar
31 in the score of <Pentatonic Melody>, where the per-
former played an expressive accelerando. Although
TemPoRe also detected that the tempo of that part was
increasing, it could not estimate the sudden and fast
changes as accurately as humans did.

On the other hand, TemPoRe’s accuracy was highest in
the first 10 seconds and between 25-35 seconds, where it
tracked the tempo almost identically to the test data. Fur-
thermore, it was concluded that TempPoRe detected ri-
tardando quite well in the part where the tempo suddenly
became faster and then slowed down abruptly at the end
of the piece. When comparing the two tempi, it was
found that there was a slight difference in certain parts,
but the direction of the tempo such as speeding up or
slowing down was well tracked in general.

Figure 3. The comparison of the tapping data of musicians
and the data of TemPoRe

6. CONCLUSIONS
This research suggests a method for combining machine
learning techniques with traditional computational meth-
ods from MIR research in order to improve the accuracy
of the results. TemPoRe utilizes the autocorrelation func-

tion and polynomial regression to obtain the estimated
tempo and the predicted tempo, respectively. By using
both tempo values alternately, the goal is to track the
tempo more stably in real-time. As a result, it can be
shown that such a hybrid approaches able to track tempo
relatively well in pieces like Bartok’s <Pentatonic Melo-
dy>.

However, the accuracy decreases when notes fluctuate
with accelerando or when there are many embellishments
such as trills, tremolo, etc. This issue can be solved by
applying the estimating tempo algorithm only to specific
ranges of the spectrum where note onsets occur, instead
of tracking the tempo for the entire incoming signal. This
shows the necessity of developing methods for spectro-
gram-based analysis and effectively applying them to
TemPoRe in the future.

The next step of this study is to implement TemPoRe,
which is currently only available in Python, into
MAX/MSP. Since many musicians use MAX/MSP for
creating electronic music, this implementation will make
TemPoRe more widely accessible and valuable. Moreo-
ver, it is anticipated that this method will also prove to be
valuable for Human-Algorithm Ensemble, Automatic
Music Transcription (AMT), and other related functions.

7. REFERENCES
[1] J. A. Grahn, J. B. Rowe, “Finding and feeling the

musical beat: striatal dissociations between detection
and prediction of regularity,” Cerebral cortex, vol.
23, no.4, pp.913-921, 2013.

[2] E. D. Scheirer, "Pulse tracking with a pitch tracker,"
Proceedings of 1997 Workshop on Applications of
Signal Processing to Audio and Acoustics, New Pal-
tz, 1997, pp.1-4.

[3] D. Deutsch, The Psychology of Music. Elsevier Scie-
nce, 2012.

[4] B. Pardo, “Tempo Tracking with a Single Oscilla-
tor,” Proceedings of International Conference on
Music Information Retrieval (ISMIR), Barcelona,
2004, pp.154-157.

[5] D.P.W. Ellis, “Beat Tracking with Dynamic Progra-
mming,” Journal of New Music Research, vol. 36,
no.1, pp. 51-60, 2006.

[6] “librosa.beat.track,” https://librosa.org/doc/main/ge-
nerated/librosa.beat.beat_track.html, accessed April
11, 2023

[7] C. J. Steinmetz, and J. D. Reiss, "WaveBeat: End-to-
end beat and downbeat tracking in the time domain,”
Proceedings of the 151st Audio Engineering Society
Convention, Las Vegas, 2021. https://www.aes.org/
publications/proceedings/?num=151, accessed April
17, 2023.

[8] “librosa.feature.tempo,” https://librosa.org/doc/main/
generated/librosa.feature.tempo.html, accessed April
10, 2023.

[9] “sklearn.linear_model,” https://scikit-learn.org/stab-
le/modules/generated/sklearn.linear_model.LinearRe
gression.html, accessed January 9, 2023.

[10] B. Bartok, <Pentatonic Melody> No. 61 from Mikr-
okosmos Vol. 2. https://www.youtube.com/watch?v-
=ML6LXzBUPdk, accessed March 15, 2023.

